
Regression in R

Fitting a Linear Regression Model

In these notes, we are going to re-analyze the data presented in Figure 12.4 from the Clark, Golder, and
Golder (2013, pp. 477-478) reading. The necessary variables are in the data set gamson.rds. You might
remember that the data frame gamson has two variables: seat_share and portfolio_share.
# load data
gamson <- readRDS("data/gamson.rds")
# note: make sure the file 'gamson.rds' is in the 'data' subdirectory
# and your working directory is set appropriately.

# quick look at data
tibble::glimpse(gamson)

## Observations: 826
## Variables: 2
## $ seat_share <dbl> 0.02424242, 0.46060607, 0.51515150, 0.47204968...
## $ portfolio_share <dbl> 0.09090909, 0.36363637, 0.54545456, 0.45454547...

This is a particularly useful data set on which to estimate a linear regression model. Remember that Gamson’s
Law states that “cabinet portfolios will be distributed among government parties in strict proportion to the
number of seats that each party contributes to the government’s legislative majority.”

Gamson’s Law implies that legislative seat shares should (according to the Law) relate to government
portfolios linearly, with an intercept of zero and a slope of one. The slope should equal one because a one
percentage point increase in seat share ought to lead to a one percentage point increase in portfolio share, at
least on average. The intercept should equal zero because we expect a party with 0% of the legislative seats
to get 0% of the government portfolios.

To fit a linear regression model, we use the lm() function. (The “l” stands for “linear” and the “m” stands
for “model.”)

The lm() function takes two arguments:

• The first argument to lm() is called a formula. For simple linear models with only one predictor, the
formula has the form y ~ x, where y is the dependent variable (or outcome variable) and x is the
independent variable (or explanatory variable or predictor). I usually put the formula first and leave
the argument implicit.

• The second argument to lm() is the data argument. This will be the data frame in which to find x and
y. I usually put this argument second and make it explicit.

In the case of the data frame gamson, our y is portfolio_share, our x is seat_share, and our data is
gamson.
# fit linear model
fit <- lm(portfolio_share ~ seat_share, data = gamson)

Now we have used the lm() function to fit the model and stored the output in the object fit. So what type
of object is fit? It turns out that lm() outputs a new type of object called a list() which is like a data
frame, but more general. Whereas we think of a data frame as a box of equal-length vectors, we can think of
lists as a box of objects. The objects in the list can be scalars, functions, vectors, data frames, or another list.
This turns out to not be practically important to us, since we will not work directly with lists in this class.

Instead of working directly with fit, which is a list, we’ll use other function to compute quantities that
interest us.
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Model Coefficients

First, we might care about the coefficients. In the case of a model with only one independent variable
(explanatory variable or predictor), we’ll just have an intercept and a slope. The coef() function takes one
argument–the output of the lm() function, which we stored as the object fit–and returns the estimated
coefficients.
coef(fit)

## (Intercept) seat_share
## 0.06913558 0.79158398

We can see that Gamson’s Law isn’t exactly correct, a one-unit percentage point increase in vote share least
to about a 0.8 unit increase in the portfolio share. Also, the intercept is slightly above zero, suggesting that
smaller parties seem to have a disproportionate advantage.

R.M.S. Error

We might also be interested in the r.m.s. error of the model. The function residuals() works just like
coef(), except it returns the model errors (i.e., “residuals”) instead of the model coefficients. Surprisingly,
there is no function that automatically calculates the r.m.s. in R (without loading a package), so we’ll have
to calculate it ourselves.
# one step at a time, r.m.s. error
errors <- residuals(fit)
s <- errors^2
m <- mean(s)
r <- sqrt(m)
print(r) # r.m.s. error

## [1] 0.06880963

# all at once
sqrt(mean(residuals(fit)^2)) # r.m.s. error

## [1] 0.06880963

For now, all we are really interested in is the coefficients and the r.m.s. error, so these two are all we need.

Fitting a Line in ggplot

Whenever we draw a scatterplot, we’ll usually want to draw the regression line through the data. That is
done by adding geom_smooth() to the plot. We’ll usually want to supply two arguments to geom_smooth().
First, we’ll want to set method = "lm" so that geom_smooth() fits a line through the data, as opposed to a
smooth curve. Second, we’ll want to set se = FALSE so that geom_smooth() does not include the standard
error, which we haven’t discussed yet (that’s the last third of the class).
# load packages
library(ggplot2)

# create scatterplot with regression line
ggplot(gamson, aes(x = seat_share, y = portfolio_share)) +

geom_point() +
geom_smooth(method = "lm", se = FALSE)
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Prediction

One important use of the linear regression model is prediction. For prediction problems, there are typically
three data sets.

1. A training set. The researcher uses this data set to fit the model. In our case, this will be a linear
regression model.

2. A prediction set. This data set contains the predictors, but not the outcome, for several new cases.
This might be new people, states, or years. Based on the variables in this data set, the researcher
produces a prediction.

3. A test set. The same as the prediction set, but with the outcome variable included. The researcher
uses the test set to evaluate her modeling approach.

The taxes data have a training set and a prediction set. For these data, the outcome we’re trying to predict
is tax_change which is the legislated changes in tax revenue (in billions) for the 50 U.S. states from 1988 to
2009. The prediction set contains the 50 U.S. states for 2010 and 2011.

For our purposes, a good predictive model minimizes the r.m.s. error of the predictions in the prediction set
(although we can’t know the r.m.s. in the prediction set–there’s no outcome to compare our predictions to.
After all, it wouldn’t be a prediction otherwise.)
# load data
training_set <- readRDS("data/taxes-training.rds")
prediction_set <- readRDS("data/taxes-prediction.rds")

# quick look at data
tibble::glimpse(training_set)

## Observations: 1,055
## Variables: 21
## $ state <chr> "Alabama", "Alabama", "Alabama"...
## $ state_abbr <fctr> AL, AL, AL, AL, AL, AL, AL, AL...
## $ year <int> 1988, 1989, 1990, 1991, 1992, 1...
## $ tax_change <dbl> 0, 0, 47, 22, 100, 0, 0, 0, 0, ...
## $ personal_income <dbl> 0.060, 0.063, 0.067, 0.072, 0.0...
## $ percent_change_personal_income <dbl> 7.84, 9.09, 5.00, 6.35, 7.46, 4...
## $ estimated_imbalance <int> 8, 67, -3, 0, 32, 119, 0, 43, 4...
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## $ taxes_last_year <dbl> 3.4, 3.7, 3.8, 3.9, 4.2, 4.6, 4...
## $ gov_request <dbl> 0, 0, 55, 0, 520, 0, 0, 0, 0, 0...
## $ lag_tax_change <dbl> 0.0, 0.0, -4.8, 0.0, 0.0, 0.0, ...
## $ population <dbl> 4.000000, 4.100000, 4.100000, 4...
## $ percent_change_population <dbl> 0.00, 0.00, 2.50, 0.00, 2.44, 0...
## $ gov_party <fctr> Republican, Republican, Republ...
## $ house_dem_share <dbl> 0.8476190, 0.8333333, 0.8333333...
## $ senate_dem_share <dbl> 0.8571429, 0.8235294, 0.8235294...
## $ citizen_ideology <dbl> 45.02993, 37.47248, 33.83535, 3...
## $ year_of_biennium <fctr> Second Year of Biennium, First...
## $ change_in_gov_party <fctr> No Change, No Change, No Chang...
## $ change_in_house_dem_share <dbl> 0.000000000, -0.014285716, 0.00...
## $ change_in_senate_dem_share <dbl> 0.00000000, -0.03361351, 0.0000...
## $ change_in_citizen_ideology <dbl> 6.51300, -7.55745, -3.63713, 5....

Two variables stand out as especially important. The first is gov_request, which is the amount of new taxes
requested by the governor. The second is estimated_imbalance, which is the estimated budget imbalance
for that year. Let’s use each of these variables and fit two linear models.
fit1 <- lm(tax_change ~ gov_request, data = training_set)
fit2 <- lm(tax_change ~ estimated_imbalance, data = training_set)

Now here is the important question: How do we know which of these models will best predict the years 2010
and 2011, which are not in this data set, but in the prediction set. Here is the answer: we don’t. We have
to rely on a good theory or model of the budget making process. However, we can try to guess how well
out model will predict out-of-sample cases (in this situation, 2010 and 2011) based on how well it predicts
in-sample cases (in this situation, 1988-2009).

R.M.S. Error

First, we can look at the r.m.s. error for each regression. Of course, a lower r.m.s. error is prefered. However,
a mdel that becomes too complex might fit the in-sample data extremely well, but out-of-sample data quite
poorly. So bias yourself toward simpler models and models that make theoretical sense.
sqrt(mean(residuals(fit1)^2)) # r.m.s. error for fit1

## [1] 383.471

sqrt(mean(residuals(fit2)^2)) # r.m.s. error for fit2

## [1] 508.0815

BIC

We can also use a model summary called the BIC (Bayesian Information Criterion) to guess which model will
predict out-of-sample data best. We can calculate the BIC for multiple models using the BIC() function and
supplying multiple lm() outputs as unnamed arguments. Lower values of the BIC indicate a better model.
BIC(fit1, fit2)

## df BIC
## fit1 3 15567.79
## fit2 3 16161.50
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Prediction

Because both the r.m.s. error and BIC suggest that fit1 is the better model, we might want to use that
model to make predictions for the prediction set. For this, we can use the predict() function.

The predict function takes two arguments:

1. The first argument is the output of lm() for the model you want to use to make predictions. This
argument is usually unnamed.

2. The second argument newdata, which is the data frame for which you’d like to make predictions. This
data frame should include the predictors used the the model (the variable(s) on the right-hand side of
the ~), but it does not need to include the outcome variable. If this argument is not included, then
predict() makes predictions for the data set used to fit the model.

By default, we store the predictions a new variable in the prediction data set.
prediction_set$prediction <- predict(fit1, newdata = prediction_set)

Are these predictions any good? We don’t know. In order to find out, we’d have to compare the predictions
to the actual values, which I have safely hidden away on my computer.

Review Exercises

1. Explain what the lm() function does and how it works. In particular, what is the first argument to
lm()? The second? What does lm() output (or return)?

2. What does the function coef() do? In particular, what is the first (and only) argument to coef()?
What does it output?

3. What does the function residuals() do? In particular, what is the first (and only) argument to
residuals()? What does it output? How can you use the output to calculate the r.m.s. error of the
regression?

4. What function do you use to add a linear regression line to a scatterplot? What arguments do we
typically supply and why?

5. Explain how to adjust the alpha transparency of the points in a scatterplot.
6. What two model summaries can we use to guess the predictive ability of the model? How do we

calculate each in R?
7. What does the function predict() do? In particular, what is the first argument to predict()? The

second? What does it output? How do you store the output of predict() as a variable in the prediction
set?
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